

Integrating Measurement Principles into Formative Assessment

Randy Bennett
Educational Testing Service
Princeton, NJ 08541
rbennett@ets.org

Presented at the annual meeting of the International Association for Educational Assessment, Baku, Azerbaijan, September 2019

HANDBOOK OF FORMATIVE ASSESSMENT IN THE DISCIPLINES

Edited by Heidi L. Andrade Randy E. Bennett Gregory J. Cizek

Overview

- Premise
- Epistemic frame
- Assessment as four fundamental acts
- Conclusion

Premise

- Fundamental measurement principles apply to formative assessment
 - Doesn't mean formative assessment should be standardized, quantified, or held to standards of technical quality required for high-stakes summative tests
 - Does mean there are basic precepts which, if ignored, can render formative judgments of limited value for moving learning forward

Epistemic Frame

- Use frame of evidentiary reasoning
 - Mislevy et al. (2003)'s ECD
 - Offers a powerful perspective for making meaning and taking action from our observations of student behavior
- The theory and methodology of ECD provide:
 - A way of reasoning about assessment design
 - A way of reasoning about observable behavior

Assessment as Evidentiary Reasoning

- Four fundamental acts:
 - Engineering opportunities to observe evidence of the competencies we wish to make claims about, and then making the relevant observations
 - Inferentially connecting that evidence to meaningful characterizations of individuals, groups, or institutions
 - Acting on those characterizations (e.g., making instructional adjustments, making an admissions decision)
 - Evaluating the quality and impact of the above
- Applies regardless of assessment purpose, though the rigor, formality, and methodology will differ significantly

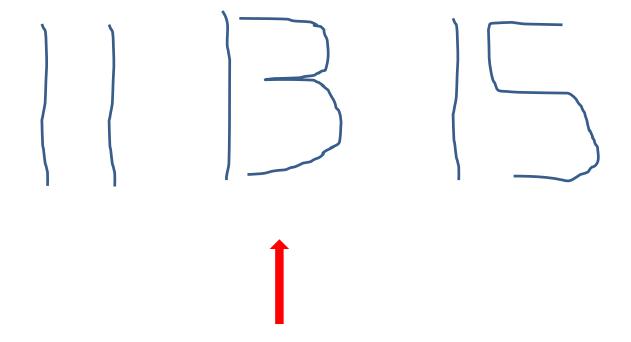
Engineering Opportunities to Observe Evidence

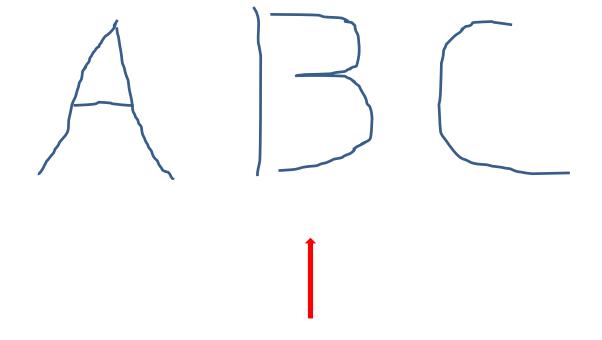
- Design situations, activities, tasks, or questions that generate observable evidence
 - Design
 - Working intentionally from claims, to the types of evidence required, to the opportunities that will provide that evidence
 - Intentionality should be the usual practice
 - Unanticipated situations occur
 - Evidence
 - Presumes some disciplinary framework—content standards, domain theory—without which it's hard to know what might be an indication of competency

Inferentially Connecting Evidence to Characterizations

- Use that evidence to make judgments, or characterizations, about what the student knows and can do so that instructional next-steps can be taken
- Our characterizations of competency always have some degree of uncertainty
 - Students sometimes misunderstand questions or are distracted such that their response implies a deficiency when there is none
 - Students sometimes answer correctly for the wrong reasons, suggesting they understand something they really do not
- Uncertainty is noise that clouds the underlying signal, possibly leading to inappropriate adjustments

Reducing Uncertainty


- Integrate the observed evidence with what is known from past behavior
 - Does the response agree with what was observed in homework, quizzes, tests, or other classwork on the same topic?
 - How does the response square with what is already believed about the student's prerequisite, as well as more advanced, knowledge?
- Gather more evidence using, as appropriate:
 - Different task formats
 - Other topical contexts
 - Other framing or phrasing


Systematic Bias

- Biases may be due to unfamiliarity with the culture, language, or behavior of students from particular demographic groups
- Research suggests teachers' judgments of students' academic competencies may be influenced by:
 - Race/ethnicity
 - Social class
 - Gender
 - Language
 - Disability status
- Bias may contribute to consistent under- or over-estimates of what students know and can do

Systematic Bias

- Problematic if it leads to misconstruing a poor response as lack of competency when the cause of incorrect responding is an irrelevant factor
- Repeated misconstrual may:
 - Lead teacher to lower expectations for some students
 - Suggest to those students that they are not progressing as well as they really are
 - Cause instructional time to be spent in less productive ways

Reducing Bias

- Teachers can take several steps to reduce the possibility of bias
 - Recognize that most individuals have preconceptions about other groups and that these preconceptions can affect how the behavior of group members is perceived
 - Develop knowledge of the student groups present in one's classes, especially if they are different from one's own demographic group
 - Routinely consult other information sources that might not be subject to the same biases
 - Colleagues with suitable background and experience with unfamiliar groups can react to:
 - Samples of student work
 - Descriptions of student classroom behavior
 - Colleagues' reactions:
 - May suggest need for further data collection
 - Can be integrated into teacher judgments of student competency

Acting on Characterizations

- Action often takes the form of next instructional steps
- A next instructional step also can reduce uncertainty as the student's response may strengthen or weaken a characterization
- Characterization as a formative hypothesis that can guide an iterative cycle:
 - Observe behavior
 - Generates hypotheses about what the student knows and the causes of incorrect responding
 - Take further action (including the making of instructional adjustments and gathering of new observations)
 - Update the starting hypothesis

Evaluating Quality and Impact

- The quality of formative assessment is a function of the:
 - Situations teachers (or students) engineer
 - Characterizations of competency they make about behavior in those types of situations
 - Actions they take based on the characterizations
 - Impact of their actions on learning

Formative Assessment and Learning

- Formative assessment as a chained activity, from which learning is more likely to occur if:
 - Its constituent situations reveal suitable evidence
 - That evidence is used to meaningfully characterize what students know and can do
 - Instructional next-steps are taken that sensibly follow from those characterizations
- To the extent that one or more of these links is inadequate, it becomes more difficult to logically ascribe any observed learning to formative assessment

Improving Quality and Impact

Self-reflection about:

- Which situations produced useful evidence (as well as how to change those situations that didn't work)
- How one's characterizations of proficiency compare to characterizations from other sources
- How sensibly one's instructional decisions follow from those characterizations (and from cognitive-domain theory, content standards, or curriculum objectives)
- Whether learning occurred and if that learning could be reasonably connected to the chain of formative actions

- Principles from educational measurement and the practice of formative assessment can be brought together through evidentiary reasoning
- Evidentiary reasoning is a way of thinking (or habit of mind) for teachers (and students) to use in:
 - Designing situations that allow for observing evidence of target competencies
 - Reasoning backward from that evidence to characterizations of proficiency
 - Taking action in keeping with those characterizations
 - Reflecting upon quality and impact (and improving formative practice)

- Within this reasoning framework, behavior provides evidence for characterizing what students know and can do
 - With such characterizations come:
 - Uncertainty
 - Systematic biases
 - Uncertainly and bias can reduce the appropriateness and effectiveness of next instructional steps

- To minimize uncertainty, one can:
 - Integrate observations with knowledge of past student behavior and evidence from other sources
 - Gather more evidence using a variety of task formats and topical contexts
 - Use an iterative cycle of observing behavior, formulating hypotheses, taking action, and updating hypotheses

- To minimize bias, one can:
 - Recognize that most individuals have preconceptions that can affect how behavior is perceived
 - Develop knowledge of the (unfamiliar) student groups in one's classes
 - Routinely consult other information sources that might not be subject to the same preconceptions

- Continual self-reflection on the quality and impact of one's formative practice would seem important
- Ideally, teachers should cultivate in themselves the same types of self-reflective and self-regulatory behavior students are expected to develop

Citations on Bias

- Bennett, R. E., Gottesman, R. L., Rock, D. A., & Cerullo, F. M. (1993). The influence of behavior and gender on teachers' judgments of students' academic skill. *Journal of Educational Psychology*, 85, 347-356.
- Hurwitz, J. T., Elliott, S. N., & Braden, J. P. (2007). The influence of test familiarity and student disability status upon teachers' judgments of students' test performance. School Psychology Quarterly, 22, 115–144. doi:10.1037/1045-3830.22.2.115
- Meissel, K., Meyer, F., Yao, E. S., & Rubie-Davies, C. M. (2017). Subjectivity of teacher judgments: Exploring student characteristics that influence teacher judgments of student ability. *Teaching and Teacher Education*, 65, 48-60. Retrieved from http://www.sciencedirect.com/science/article/pii/S0742051X17303475#bib64
- Ready, D. D., & Wright, D. L. (2011). Accuracy and inaccuracy in teachers' perceptions of young children's cognitive abilities: The role of child background and classroom context. *American Educational Research Journal*, 48, 335-360. Doi: 10.3102/0002831210374874

Citations on Measurement Principles in Formative Assessment

- Bennett, R. E. (2019). Integrating measurement principles into formative assessment. In H. L. Andrade, R. E. Bennett, & G. J. Cizek (Eds.), *Handbook of formative* assessment in the disciplines (pp. 20-31). New York: Routledge.
- Bennett, R. E. (2011). Formative assessment: A critical review. Assessment in Education: Principles, Policy and Practice 18, 5-25.
 https://www.tandfonline.com/doi/full/10.1080/0969594X.2010.513678
- rbennett@ets.org

HANDBOOK OF FORMATIVE ASSESSMENT IN THE DISCIPLINES

Edited by Heidi L. Andrade Randy E. Bennett Gregory J. Cizek

